Constrained probability distributions of correlation functions
نویسنده
چکیده
Context. Two-point correlation functions are used throughout cosmology as a measure for the statistics of random fields. When used in Bayesian parameter estimation, their likelihood function is usually replaced by a Gaussian approximation. However, this has been shown to be insufficient. Aims. For the case of Gaussian random fields, we search for an exact probability distribution of correlation functions, which could improve the accuracy of future data analyses. Methods. We use a fully analytic approach, first expanding the random field in its Fourier modes, and then calculating the characteristic function. Finally, we derive the probability distribution function using integration by residues. We use a numerical implementation of the full analytic formula to discuss the behaviour of this function. Results. We derive the univariate and bivariate probability distribution function of the correlation functions of a Gaussian random field, and outline how higher joint distributions could be calculated. We give the results in the form of mode expansions, but in one special case we also find a closed-form expression. We calculate the moments of the distribution and, in the univariate case, we discuss the Edgeworth expansion approximation. We also comment on the difficulties in a fast and exact numerical implementation of our results, and on possible future applications.
منابع مشابه
A continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملStochastic Comparisons of Probability Distribution Functions with Experimental Data in a Liquid-Liquid Extraction Column for Determination of Drop Size Distributions
The droplet size distribution in the column is usually represented as the average volume to surface area, known as the Sauter mean drop diameter. It is a key variable in the extraction column design. A study of the drop size distribution and Sauter-mean drop diameter for a liquid-liquid extraction column has been presented for a range of operating conditions and three different liquid-liquid sy...
متن کاملFitting Tree Height Distributions in Natural Beech Forest Stands of Guilan (Case Study: Masal)
In this research, modeling tree height distributions of beech in natural forests of Masal that is located in Guilan province; was investigated. Inventory was carried out using systematic random sampling with network dimensions of 150×200 m and area sample plot of 0.1 ha. DBH and heights of 630 beech trees in 30 sample plots were measured. Beta, Gamma, Normal, Log-normal and Weibull prob...
متن کاملMultiple utility constrained multi-objective programs using Bayesian theory
A utility function is an important tool for representing a DM’s preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utili...
متن کاملEffects of Probability Function on the Performance of Stochastic Programming
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...
متن کامل